Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Am J Respir Crit Care Med ; 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2282594

ABSTRACT

RATIONALE: Shared symptoms and genetic architecture between COVID-19 and lung fibrosis suggests SARS-CoV-2 infection may lead to progressive lung damage. OBJECTIVES: The UKILD Post-COVID study interim analysis was planned to estimate the prevalence of residual lung abnormalities in people hospitalized with COVID-19 based on risk strata. METHODS: The Post-HOSPitalisation COVID Study (PHOSP-COVID) was used for capture of routine and research follow-up within 240 days from discharge. Thoracic CTs linked by PHOSP-COVID identifiers were scored for percentage of residual lung abnormalities (ground glass opacities and reticulations). Risk factors in linked CT were estimated with Bayesian binomial regression and risk strata were generated. Numbers within strata were used to estimate post-hospitalization prevalence using Bayesian binomial distributions. Sensitivity analysis was restricted to participants with protocol driven research follow-up. MEASUREMENTS AND MAIN RESULTS: The interim cohort comprised 3700 people. Of 209 subjects with linked CTs (median 119 days, interquartile range 83-155), 166 people (79.4%) had >10% involvement of residual lung abnormalities. Risk factors included abnormal chest X-ray (RR 1·21 95%CrI 1·05; 1·40), percent predicted DLco<80% (RR 1·25 95%CrI 1·00; 1·56) and severe admission requiring ventilation support (RR 1·27 95%CrI 1·07; 1·55). In the remaining 3491 people, moderate to very-high risk of residual lung abnormalities was classified in 7·8%, post-hospitalization prevalence was estimated at 8.5% (95%CrI 7.6%; 9.5%) rising to 11.7% (95%CrI 10.3%; 13.1%) in sensitivity analysis. CONCLUSIONS: Residual lung abnormalities were estimated in up to 11% of people discharged following COVID-19 related hospitalization. Health services should monitor at-risk individuals to elucidate long-term functional implications. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

2.
Sci Transl Med ; 14(671): eabo5795, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2119264

ABSTRACT

Interstitial lung disease and associated fibrosis occur in a proportion of individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through unknown mechanisms. We studied individuals with severe coronavirus disease 2019 (COVID-19) after recovery from acute illness. Individuals with evidence of interstitial lung changes at 3 to 6 months after recovery had an up-regulated neutrophil-associated immune signature including increased chemokines, proteases, and markers of neutrophil extracellular traps that were detectable in the blood. Similar pathways were enriched in the upper airway with a concomitant increase in antiviral type I interferon signaling. Interaction analysis of the peripheral phosphoproteome identified enriched kinases critical for neutrophil inflammatory pathways. Evaluation of these individuals at 12 months after recovery indicated that a subset of the individuals had not yet achieved full normalization of radiological and functional changes. These data provide insight into mechanisms driving development of pulmonary sequelae during and after COVID-19 and provide a rational basis for development of targeted approaches to prevent long-term complications.


Subject(s)
COVID-19 , Extracellular Traps , Humans , SARS-CoV-2 , Neutrophils , Lung
4.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1438096

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has led to over 100 million cases worldwide. The UK has had over 4 million cases, 400 000 hospital admissions and 100 000 deaths. Many patients with COVID-19 suffer long-term symptoms, predominantly breathlessness and fatigue whether hospitalised or not. Early data suggest potentially severe long-term consequence of COVID-19 is development of long COVID-19-related interstitial lung disease (LC-ILD). METHODS AND ANALYSIS: The UK Interstitial Lung Disease Consortium (UKILD) will undertake longitudinal observational studies of patients with suspected ILD following COVID-19. The primary objective is to determine ILD prevalence at 12 months following infection and whether clinically severe infection correlates with severity of ILD. Secondary objectives will determine the clinical, genetic, epigenetic and biochemical factors that determine the trajectory of recovery or progression of ILD. Data will be obtained through linkage to the Post-Hospitalisation COVID platform study and community studies. Additional substudies will conduct deep phenotyping. The Xenon MRI investigation of Alveolar dysfunction Substudy will conduct longitudinal xenon alveolar gas transfer and proton perfusion MRI. The POST COVID-19 interstitial lung DiseasE substudy will conduct clinically indicated bronchoalveolar lavage with matched whole blood sampling. Assessments include exploratory single cell RNA and lung microbiomics analysis, gene expression and epigenetic assessment. ETHICS AND DISSEMINATION: All contributing studies have been granted appropriate ethical approvals. Results from this study will be disseminated through peer-reviewed journals. CONCLUSION: This study will ensure the extent and consequences of LC-ILD are established and enable strategies to mitigate progression of LC-ILD.


Subject(s)
COVID-19/complications , Lung Diseases, Interstitial , Humans , Longitudinal Studies , Lung Diseases, Interstitial/epidemiology , Observational Studies as Topic , Pandemics , Prospective Studies , United Kingdom/epidemiology , Post-Acute COVID-19 Syndrome
5.
Eur Respir J ; 58(3)2021 09.
Article in English | MEDLINE | ID: covidwho-1190029
7.
JACC Basic Transl Sci ; 5(11): 1111-1123, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1065247

ABSTRACT

Vascular and cardiovascular inflammation and thrombosis occur in patients with severe coronavirus disease-2019 (COVID-19). Advancing age is the most significant risk factor for severe COVID-19. Using transcriptomic databases, the authors found that: 1) cardiovascular tissues and endothelial cells express putative genes for severe acute respiratory syndrome coronavirus-2 infection, including angiotensin-converting enzyme 2 (ACE2) and basigin (BSG); 2) severe acute respiratory syndrome coronavirus-2 receptor pathways ACE2/transmembrane serine protease 2 and BSG/peptidylprolyl isomerase B(A) polarize to lung/epithelium and vessel/endothelium, respectively; 3) expression of host genes is relatively stable with age; and 4) notable exceptions are ACE2, which decreases with age in some tissues, and BSG, which increases with age in endothelial cells, suggesting that BSG expression in the vasculature may explain the heightened risk for severe disease with age.

8.
Am J Respir Crit Care Med ; 202(12): 1656-1665, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-810560

ABSTRACT

Rationale: The impact of coronavirus disease (COVID-19) on patients with interstitial lung disease (ILD) has not been established.Objectives: To assess outcomes in patients with ILD hospitalized for COVID-19 versus those without ILD in a contemporaneous age-, sex-, and comorbidity-matched population.Methods: An international multicenter audit of patients with a prior diagnosis of ILD admitted to the hospital with COVID-19 between March 1 and May 1, 2020, was undertaken and compared with patients without ILD, obtained from the ISARIC4C (International Severe Acute Respiratory and Emerging Infection Consortium Coronavirus Clinical Characterisation Consortium) cohort, admitted with COVID-19 over the same period. The primary outcome was survival. Secondary analysis distinguished idiopathic pulmonary fibrosis from non-idiopathic pulmonary fibrosis ILD and used lung function to determine the greatest risks of death.Measurements and Main Results: Data from 349 patients with ILD across Europe were included, of whom 161 were admitted to the hospital with laboratory or clinical evidence of COVID-19 and eligible for propensity score matching. Overall mortality was 49% (79/161) in patients with ILD with COVID-19. After matching, patients with ILD with COVID-19 had significantly poorer survival (hazard ratio [HR], 1.60; confidence interval, 1.17-2.18; P = 0.003) than age-, sex-, and comorbidity-matched controls without ILD. Patients with an FVC of <80% had an increased risk of death versus patients with FVC ≥80% (HR, 1.72; 1.05-2.83). Furthermore, obese patients with ILD had an elevated risk of death (HR, 2.27; 1.39-3.71).Conclusions: Patients with ILD are at increased risk of death from COVID-19, particularly those with poor lung function and obesity. Stringent precautions should be taken to avoid COVID-19 in patients with ILD.


Subject(s)
COVID-19/epidemiology , Hospitalization/statistics & numerical data , Lung Diseases, Interstitial/epidemiology , Aged , Aged, 80 and over , Comorbidity , Disease Progression , Europe/epidemiology , Female , Humans , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/therapy , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
9.
Thorax ; 75(11): 1009-1016, 2020 11.
Article in English | MEDLINE | ID: covidwho-729414

ABSTRACT

The COVID-19 pandemic has led to an unprecedented surge in hospitalised patients with viral pneumonia. The most severely affected patients are older men, individuals of black and Asian minority ethnicity and those with comorbidities. COVID-19 is also associated with an increased risk of hypercoagulability and venous thromboembolism. The overwhelming majority of patients admitted to hospital have respiratory failure and while most are managed on general wards, a sizeable proportion require intensive care support. The long-term complications of COVID-19 pneumonia are starting to emerge but data from previous coronavirus outbreaks such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) suggest that some patients will experience long-term respiratory complications of the infection. With the pattern of thoracic imaging abnormalities and growing clinical experience, it is envisaged that interstitial lung disease and pulmonary vascular disease are likely to be the most important respiratory complications. There is a need for a unified pathway for the respiratory follow-up of patients with COVID-19 balancing the delivery of high-quality clinical care with stretched National Health Service (NHS) resources. In this guidance document, we provide a suggested structure for the respiratory follow-up of patients with clinicoradiological confirmation of COVID-19 pneumonia. We define two separate algorithms integrating disease severity, likelihood of long-term respiratory complications and functional capacity on discharge. To mitigate NHS pressures, virtual solutions have been embedded within the pathway as has safety netting of patients whose clinical trajectory deviates from the pathway. For all patients, we suggest a holistic package of care to address breathlessness, anxiety, oxygen requirement, palliative care and rehabilitation.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/therapy , Lung Diseases/therapy , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Respiration Disorders/therapy , Algorithms , COVID-19 , Coronavirus Infections/diagnosis , Humans , Lung Diseases/diagnosis , Lung Diseases/virology , Pandemics , Pneumonia, Viral/diagnosis , Respiration Disorders/diagnosis , Respiration Disorders/virology , SARS-CoV-2
10.
Non-conventional in English | WHO COVID | ID: covidwho-276695

ABSTRACT

Summary In December, 2019, reports emerged from Wuhan, China, of a severe acute respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). By the end of April, 2020, over 3 million people had been confirmed infected, with over 1 million in the USA alone, and over 215 000 deaths. The symptoms associated with COVID-19 are diverse, ranging from mild upper respiratory tract symptoms to severe acute respiratory distress syndrome. The major risk factors for severe COVID-19 are shared with idiopathic pulmonary fibrosis (IPF), namely increasing age, male sex, and comorbidities such as hypertension and diabetes. However, the role of antifibrotic therapy in patients with IPF who contract SARS-CoV-2 infection, and the scientific rationale for their continuation or cessation, is poorly defined. Furthermore, several licensed and potential antifibrotic compounds have been assessed in models of acute lung injury and viral pneumonia. Data from previous coronavirus infections such as severe acute respiratory syndrome and Middle East respiratory syndrome, as well as emerging data from the COVID-19 pandemic, suggest there could be substantial fibrotic consequences following SARS-CoV-2 infection. Antifibrotic therapies that are available or in development could have value in preventing severe COVID-19 in patients with IPF, have the potential to treat severe COVID-19 in patients without IPF, and might have a role in preventing fibrosis after SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL